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Abstract 
The adsorption energy distributions derived from the Adamson and Ling (AL), and the House and Jaycock 

HILDA numerical methods are compared with the Sips analytical solution, which is used as a benchmark for these 
numerical methods. Excellent agreement between the analytical and numerical methods is achieved provided that 
the isotherm data are measured over a wide range of adsorbate partial pressures, extending to near the saturation 
capacity. While a lack of accurate low-pressure data will merely result in an inaccurate energy distribution in the 
high-energy range, a lack of these high-pressure data may result in an entirely wrong energy distribution. 

1. Introduction 

Almost all solid surfaces are heterogeneous 
[1,2]. A quantitative description of adsorption on 
a real, heterogeneous adsorbent requires the use 
of the adsorption energy distribution function 
[l]. Two widely different models of the adsor- 
bent surface have been discussed in the literature 
[3,4]. The random distribution site model intro- 
duced by Hill [3] assumes that sites with different 
adsorption energy are randomly distributed over 
the surface, and the adsorption system must be 
considered as a single thermodynamic entity. 
The homotattic model [4] assumes that the 
surface is made of patches randomly distributed 
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on the surface, but that each patch is covered 
with adsorption sites having the same adsorption 
energy, i.e., is homogeneous. These patches are 
large enough to permit the application of statisti- 
cal thermodynamics to every one of them, so the 
whole system can be considered as a collection of 
independent subsystems. 

In this work, we consider the latter, patch-wise 
heterogeneity model in which the average degree 
of surface coverage at constant temperature, 
qd(p), is related to the partial pressure, p, of the 
adsorbate vapor by 

4(P) I 
%lax 

qd(P) = 4 = fx% PM(E) de 
s 'min 

(1) 

where q(p) is the experimental adsorption iso- 
therm, q, the monolayer saturation capacity of 
the adsorbent, O(E, p) the local isotherm on the 
homogeneous patch having an adsorption energy 
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E and f(e) the energy distribution function, so 
f(e) de is th e rat ion of the surface on which the f t’ 
binding energy is between E and E + de. emin and 
E max are the lowest and the highest values of the 
adsorption energy on the heterogeneous surface 
considered, respectively. 

The aim of this approach is the derivation of 
the energy distribution function, f(e), from the 
experimental isotherm, q(p) (which is the only 
parameter in Eq. 1 which can be determined 
experimentally), and assuming a model for the 
local isotherm, 0(e, p). It has been extensively 
used in the past 20 years to investigate real 
surfaces [1,2,5]. A number of different solutions 
of Eq. 1 have been suggested. However, few 
comparisons, if any, have been made between 
the results obtained when applying these differ- 
ent solutions to the same set of data. 

of the adsorption energy distribution function 
from experimental isotherms. This work will 
provide further information on the sensitivity of 
the distribution function to the choice of a model 
for the experimental isotherm, to the accuracy of 
the experimental data and to the numerical 
errors. 

2. Theory 

There are two general types of solutions for 
such a problem, analytical and numerical. Ana- 
lytical solutions can be derived only if further 
assumptions are made regarding both the local 
and the experimental isotherm models. These 
assumptions are too restrictive to be of practical 
value, so attention has mainly focused on nu- 
merical solutions. This approach requires less 
restrictive assumptions, regarding only the local 
isotherm model. However, it suffers from a 
considerable drawback. Numerical methods are 
essentially empirical, using computing power to 
derive the energy distribution function which 
permits the calculation of the isotherm that best 
approximates the experimental isotherm. The 
mathematical problem is ill-posed, however, and 
does not have a unique solution [1,2,5--91, so 
restrictions are necessary. Because there are no 
independent methods for the determination of 
the adsorption energy distribution function, and 
there are no adsorbents available with a known 
adsorption energy distribution function, we have 
no way of knowing whether the result of the 
calculation is correct. Therefore, the reliability 
of any procedure for the experimental determi- 
nation of the adsorption energy distribution 
function is in doubt. 

From a mathematical point of view, Eq. 1 is a 
Fredholm integral equation of the first kind, for 
which there is no general analytical solution. The 
problem is ill-posed and does not have a unique 
solution, so further restrictions are necessary to 
obtain the solution of the physical problem. Two 
types of methods have been investigated in 
attempts to derive a solution. numerical methods 
based on iterative procedures and direct ana- 
lytical methods, which require some further 
assumptions and simplifications. In all instances, 
an isotherm model must be assumed for the local 
adsorption isotherm. We discuss first analytical 
and then numerical solutions. 

2.1. Analytical solution of the Sips method 

Three different methods for the determination 
of an analytical solution of Eq. 1 have been 
suggested, the Sips [lo], Hobson [l l] and con- 
densation approximation [12] methods. These 
methods differ mainly in the local isotherm 
model assumed. In the Sips method, the local 
isotherm is the Langmuir model: the adsorption 
is localized, the adsorbate does not move on the 
surface, there are no adsorbate-adsorbate inter- 
actions and the gas phase is ideal. As this 
method uses the least simplistic local model, it is 
the only method considered here. 

The local isotherm is given by 

(2) 

In this paper, we consider the analytical solu- where K is a constant independent of E, of the 
tions of Eq. 1 and compare them with the column temperature T and of the location on the 
numerical solutions available for the evaluation surface. The following equations have been 
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suggested in the literature to provide an estimate 
of the value of K: 

K= -hn 
3.5 * 1oz2t0 (34 

K = 1.76. 104X&? (3b) 

K = P, eAviRT (3c) 

where M is the molecular mass of the adsorbate, 
cr,,, the monolayer coverage (number of mole- 
cules per unit surface area of adsorbent), t, the 
vibration time of the adsorbed molecules (s); P, 
the vapor pressure, A, the molar heat of vapori- 
zation of the adsorbate studied and R the ideal 
gas constant (1.987 Cal/K- mol) (1 cal= 4.186 J). 
With the numbers used, K in Eqs. 3a and 3b is 
given in Torr (1 Torr = 133.322 Pa). 

The first equation is based on the kinetic 
derivation of the Langmuir isotherm, which 
equates at equilibrium the adsorption and de- 
sorption flux, assuming the condensation coeffi- 
cient to be unity [11,13]. The second was sug- 
gested by Hobson [ll] for nitrogen and the third 
by Dormant and Adamson [14]. In this work, we 
used Eq. 3c. 

Eq. 1 is reformulated as a Stieltjes transform 
of the distribution function, which is inverted 
using standard mathematical techniques [15]. 
Inserting Eq. 2 into Eq. 1, and letting 

,=%,1 (44 

x = exp(eIRT) (4b) 

g(x) =f[RT ln(1 +x)] =f(~) (4c) 

1 K 
h(y)=mqd y_l ( > 

we obtain for Eq. 1 

Thus, h(y) is the Stieltjes transform of g(x), and 
the solution is [15] 

f(E) = g(x) = 
h(x eeirr) - h(x e’“) 

2i77 (5) 

For obvious physical reasons, the limits of qd(P) 
have following values: 

qd(0) = 0 and lim,,, qd = 1 (6) 

The first condition is always satisfied; the second 
one is also, provided that the function f(e) is 
normalized, i.e., if 

I 
0m f(e) de = 1 (7) 

To go further and determine f(e), we need an 
analytical expression for the experimental iso- 
therm. This equation must satisfy Eq. 6. Thus, 
for example, we can use the Langmuir model but 
not the Freundlich model, which does not satisfy 
the second limit condition. Usually, the Lang- 
muir model does not fit well the experimental 
data measured with heterogeneous surfaces 
[1,2]. It is possible to derive an adsorption 
energy distribution function with the Sips meth- 
od for only few local isotherm models. 

Generalized Freundlich isotherm 
This isotherm is given by 

qd(P) = (&)c 
where c is a numerical parameter and K is the 
same as in Eq. 2. Unlike the Freundlich iso- 
therm, the generalized Freundlich isotherm satis- 
fies the second condition in Eq. 6, if 0 < c < 1. In 
this case, the adsorption energy distribution 
function is given by 

1 sin wc E,RT .- f(e) = RT 7T (e - l)_” (9) 

This result is easily extended to the generalized 
form of the isotherm in Eq. 8: 

with A < K. The adsorption 
function for the isotherm in 

[lOI 

f(E) = 0 0 -=z E < E. 

energy distribution 
Eq. 10 is given by 

(lla) 
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(lib) 
where E,, = RT In(KIA). Thus, the replacement 
of K by A merely shifts the adsorption energy 
distribution by the amount E,). 

Langmuir isotherm 
In this case, c = 1 in Eqs. 10 and 11, and the 

latter reduces to a 6 function, the distribution 
being zero everywhere. except for E = E(,, where 
it is infinite. This result is consistent with the 
Langmuir isotherm model which assumes a 
homogeneous surface, all the adsorption sites 
having the same adsorption energy, co. 

Multi-Langmuir isotherm 
Many experimental data can be fitted to a 

bi-Langmuir or a multi-Langmuir isotherm equa- 
tion [16,17]: 

(14 

Applying the same calculation procedure as 
above, we obtain that the adsorption energy 
distribution is zero everywhere, except at the 
energies 

K 

Ei== RT1nAI (13) 

where it is infinite. In practice, the adsorption 
energy distribution for a multi-Langmuir iso- 
therm consists of a series of very sharp lines. The 
surface is made of homogeneous patches of a few 
different types. The number of lines is equal to 
the number of patch types, their energy to the 
adsorption energy on the corresponding adsorp- 
tion site and the relative intensity of the impulse 

is q,.,/q,,,,,, where q,,, is the saturation capacity 
of the corresponding Langmuir term and q,.t,t is 
the total saturation capacity. This result is con- 
sistent with the multi-Langmuir isotherm model. 

Misra isotherm 
This isotherm is given by 1181 

qd(P) = (K - npTn(I + n) ’ In ( 1 1+$ 
l+n (14) 

and the corresponding adsorption energy dis- 
tribution is [IS] 

f(e) = n e!RT -I 

RT In (1 + n) (n+e > (15) 

If .eO is the lower limit of the adsorption energy 
distribution, the isotherm and the adsorption 
energy distributions become, respectively [18], 

qd(P) = 
v 

(K-np)ln l+$ 
( 1 

(16) 

f(E) = 
n tIRT -1 

RT In (r + n) - tO (n+e ) (17) 

with r = erfliR’. According to Eq. 11, f(e) tends 
towards zero when E increases indefinitely, it 
increases with decreasing l and increases indefi- 
nitely when E tends towards .eO. The adsorption 
energy distribution is zero at values of E below 

en. 

Dubinin-Radushkevich isotherm 
The empirical Dubinin-Radushkevich iso- 

therm [19] is given by 

qd(P) = exp[-B’jRT ln$)1] (18) 

where B’ is a numerical constant and P, is the 
vapor pressure of the pure liquid adsorbate at 
the temperature of the experiment. Like the 
Freundlich isotherm, the Dubinin-Radushkevich 
isotherm does not satisfy Eq. 6, as required for 
the Stieltjes transform, and is not physically 
compatible with the Sips method. Misra modified 
the Dubinin-Radushkevich isotherm and pro- 
posed a “generalized” equation that satisfies the 
requirements of the Stieltjes transform. This new 
isotherm equation is [20] 

q”(P)=exp{-R[RTln (1 +$I]‘) (19) 

where B and c are numerical constants. With the 
addition of 1 in the expression under the 
logarithm operator, Eq. 6 is satisfied, and the 
replacement of P, by an adjustable constant 
gives some flexibility to an empirical equation; c 
is obtained by fitting the experimental data to 
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Eq. 19. The adsorption energy distribution func- 
tion is 

f(E) = 
exp(**BR*T’) 

ITRT 
- sin(2rRTBe) evBr2 

(204 

The shape of the adsorption energy distribution 
obtained is very different from that given in Eq. 
11. f(c) tends towards 0 when E tends towards 
either 0 or w. The profile is a skewed Gaussian 
reaching its maximum value for 

E = EM =A 
2.2. Numerical solutions 

With all numerical methods, a local isotherm 
model needs to be assumed for each patch. This 
means that a general model of the local isotherm 
(e.g., Langmuir) must be assumed, in addition to 
a functional relationship between the coefficients 
of this isotherm and the adsorption energy. 
Because of the ill-posed nature of the mathe- 
matical problem and the non-unicity of its gener- 
al solution [6-91, two approaches have been used 
to calculate numerical solutions of Eq. 1. In the 
first approach, a particular form of the adsorp- 
tion energy distribution function is assumed. Its 
coefficients are determined by matching the 
isotherm calculated with Eq. 1 to the experimen- 
tal isotherm, and minimizing the residue with a 
conventional fitting procedure. In the second 
approach, no assumptions are made regarding 
the nature or shape of the adsorption energy 
distribution function, and this function is derived 
directly from the experimental isotherm. This 
type of computation is extremely difficult, how- 
ever, because of the constraints imposed by the 
requirement of a realistic solution and the in- 
fluence of experimental errors. 

Methods based on the assumption of an 
analytical function for the adsorption energy 
distribution 

Several groups have investigated this approach 
in the past. Ross and Oliver [4] assumed a 
Gaussian distribution function for the adsorption 

5 

energy distribution. Their method can also be 
used with the sum of a few Gaussian distribu- 
tions. Hoory and Prausnitz [21] used a long-tail 
function, skewed and defined only for positive 
values of E. Kindel [22] assumed a Maxwell 
function, Jaroniec et al. [23] a gamma function 
and Sparnaay [24] a surface covered by a few 
patches only. 

In general, any kind of analytical expression 
can be assumed for the energy distribution, and 
the coefficients of this expression can be ob- 
tained by optimization, using any of a variety 
of curve-fitting algorithms. For example, Van 
Dongen [25] assumed an analytical expression 
for the energy distribution of the form 

In f(e) = b, + bIe + b,e* + . . . + b,,e” (21) 

The optimum values of the parameters bi are 
obtained by minimizing the sum of the squares of 
the differences between calculated and experi- 
mental isotherm points with respect to the bi. 

The major disadvantage of this approach is 
that there are no methods available for the direct 
determination of the adsorption energy distribu- 
tion, or any fundamental or even compelling 
reasons to chose any one of the many possible 
distribution functions available. The use of this 
approach was a practical necessity when the 
computing power available was low, and it has 
become obsolete with the advent of modern 
computers that permit the much more complex 
calculations required when no energy distribu- 
tions are assumed. 

Direct methods of calculation of the adsorption 
energy dzktribution 

Three different, important procedures have 
been described in the literature, the Adamson 
and Ling (AL) method [26], the HILDA algo- 
rithm of House and Jaycock [27] and the CAED- 
MON algorithm of Ross and Morrison [28]. 
None of them makes any a priori assumption 
regarding the shape of the adsorption energy 
distribution, except that f(0) = 0, f(e) tends 
towards zero when E tends towards infinity and 
that the integral over the whole energy range is 
finite. We discuss these methods successively. 
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Adamson-Ling method. In this method [26], 
Eq. 1 is rewritten as 

I 
I 

qd(P) = fXe, P> dF (224 
(I 

with 

where F(E) is the integral site energy distribu- 
tion, i.e., the fraction of the surface covered by 
sites on which the adsorption energy exceeds E. 

Eq. 22a can be approximated by the sum 

I = n 

qd, = c O,,(F, - F, ,) j = 1, 2, , m (23) 
1-1 

where m is the number of data points acquired 
and y1 is the number of intervals used to repre- 
sent the adsorption energy distribution. An itera- 
tive calculation procedure is used. The first 
approximation of the integral of the adsorption 
energy distribution for this iterative procedure is 
obtained by using the condensation approxima- 
tion for the local isotherm: 

I;(t,) 1 

qd, = I 
1 x dF(c) + ,~ I 

0 x dF(e) (24) 
F(t, 1 

Hence, the first approximation of the energy 
integral is given by 

F(ej) = qd,_,, (25) 

These values of the integral of the adsorption 
energy distribution are used in Eq. 22, together 
with a realistic model of the local isotherm, to 
evaluate the total isotherm, qd, ,,,. The mono- 

layer capacity should be evaluated independent- 
ly, for example from the results of the BET 
method. 

In their original work, performed in 1961, 
Adamson and Ling [26] had to use a graphical 
procedure to judge the deviations between the 
calculated and the experimental isotherms, make 
the decisions regarding the extent of the dis- 
agreement and the nature of the adjustments 
best needed for the next iteration step. Difficul- 
ties arose because the distribution resulting from 
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successive approximations may not differ much 
from one step to the next, the changes may not 
be systematic and no continuous trend towards 
convergence was apparent. The graphical meth- 
od showed also a tendency for ripples to appear 
in the energy distribution function. and to prop- 
agate. These ripples have to be damped and 
suppressed, so the final distribution function is 

not oscillating. Later, a computer program was 
developed to carry out the method, and the 
computation was ended when the root mean 
square of the deviation between the experimen- 
tal and the calculated isotherms became smaller 
than a certain threshold. 

HZLDA algorithm. House and Jaycock [27] pro- 
posed a numerical method based on the iterative 
scheme of Adamson and Ling [26]. This method 
was presented under the acronym HILDA, for 
Heterogeneity Investigated at Loughborough by 
a Distribution Analysis. Instead of directly 

evaluating the Eq. 23, House and Jaycock re- 
wrote it as 

qd(p,) = 1’ F(E) WE, P,) (26) 
0 

They assumed that the energy distribution has a 
finite width, determined by the lowest and high- 
est partial pressures at which adsorbed amounts 
have been determined experimentally, that any 
surface patch which has an integral adsorption 
energy greater than E,,, is fully covered with a 
monolayer of adsorbate, while any surface patch 
for which the integral adsorption energy is lower 
than E,,,~” is empty. Then, Eq. 26 can be rewritten 
LIS 

qd(p,) = I 
f&c I’, 1 

f) (,~ ) F(E) dO(c. P,) + F(%,&P, 
1 i 

+ Fk,,,)[l - %(P,)l (27) 

where Oh and 0, are the fractional coverages at 
the pressure p, of the surface patches with the 
highest and lowest adsorption energies, respec- 
tively. As in the AL method, the condensation 
approximation is used for obtaining the initial 
value of the integral energy, F, and the value of 
F in the kth iteration is calculated according to 
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(28) 
Yi,,, 

The solution is reached when the root mean 
square deviation between the experimental and 
the calculated isotherms becomes lower than a 
given threshold. 

The algorithm includes also a quadratic 
smoothing function for the isotherm data. This 
function can also be used to smooth the energy 
distribution function obtained, if necessary. In 
order to ensure that an evenly spaced adsorption 
energy distribution function will be obtained, the 
program does not use the experimental adsorp- 
tion isotherm, under its classical representation, 
but with the adsorbate partial pressure expressed 
in a logarithmic scale. The HILDA program 
offers four choices for the local isotherm, the 
Langmuir, the Fowler-Guggenheim, the Hill-de 
Boer or the virial isotherms. Independent, prior 
knowledge of the monolayer capacity of the 
adsorbent is not a prerequisite for the calcula- 
tion. The value of the monolayer capacity can be 
adjusted and eventually determined from the 
normalization factor, since F(E,,,~“) = Jfzi; f(e) de 
has to be equal to 1. The HILDA algorithm has 
been used extensively for the investigation of the 
surface heterogeneity of various solids [29]. 

CAEDMON algorithm. Ross and Morrison [28] 
developed another algorithm for the same pur- 
pose, the Computer Adsorptive Energy Distribu- 
tion in the MONolayer (CAEDMON). This 
algorithm uses only the two-dimensional virial 
isotherm to represent the local isotherm. This 
algorithm was later modified by Sacher and 
Morrison [30], who used more reliable and 
effective procedures to ensure convergence and 
uniqueness of the solution. 

Quasi-Adamson method. Roles and Guiochon 
[17] used a combination of two approaches 
developed previously. In a first part, they used a 
modification of the AL method, with computer- 
ized numerical iterations. The experimental iso- 
therm is replaced by a multi-Langmuir isotherm. 
In most cases, a bi-Langmuir isotherm was found 

I 

to fit the experimental data excellently. As we 
have shown in the previous section, this algo- 
rithm is not necessary since for a multi-Langmuir 
experimental isotherm there is an analytical 
solution of Eq. 1, a series of impulses, one for 
each Langmuir term of the isotherm, at energies 
related to the coefficients of the Langmuir term. 
Although in a second, confirmation stage the 
method [17,31,32] replaces the multi-Langmuir 
isotherm by an Akima spline [33] representation 
of the experimental data to verify the number of 
modes of the energy distribution, it cannot 
divorce itself from the multi-Langmuir repre- 
sentation used in the first stage. Because iso- 
therm measurements can be made only in a 
limited range of partial pressures, a multi-Lang- 
muir isotherm still has to be used for the ex- 
trapolation of the experimental data at high 
pressures. As a consequence, the method may 
generate spurious peaks. 

The second part of this procedure, called the 
Distribution Function Substitution, is similar to 
the method developed by Ross and Oliver [4]. 
Each peak of the energy distribution function 
derived in the first part of the procedure is 
replaced by an analytical function. If the peak 
obtained from the quasi-Adamson method is 
symmetrical, it is replaced by a Gaussian dis- 
tribution; if slightly skewed, by an exponentially 
modified Gaussian distribution; and if highly 
unsymmetrical, by a I function. The parameters 
of these functions are adjusted and optimized by 
a simplex optimization pursued until the best fit 
is obtained between the experimental and calcu- 
lated isotherms, using a test based on the value 
of the root mean square of the difference be- 
tween measured and calculated isotherms. 

In practice, this method suffers the same 
drawbacks as the Ross and Oliver approach [4]. 
It involves the replacement of the unknown 
adsorption energy distribution by the. sum of a 
number of analytical functions, and the optimi- 
zation of their parameters. Admittedly, the se- 
lected distributions are somewhat less arbitrarily 
chosen than those elected by Ross and Oliver 
[4], and by those following the same approach 
[21-251, but that still does not make the method 
realistic, since there are no reasons at this stage 
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to select any model for the adsorption energy 
distribution. 

Algorithms selected for the calculation of the 
adsorption energy distribution 

For further numerical calculations, we decided 
to select the Adamson and Ling [26] and the 

House and Jaycock [27] approaches, which make 
no arbitrary choices of either an isotherm model 
for the experimental isotherm or a distribution 
model for the adsorption energy distribution. We 
used slightly modified algorithms implementing 
the essential principles of the AL [26] and 
HILDA [27] original methods, and wrote 
computer programs to implement them. As the 
computers available to us are considerably more 
powerful than those available to these authors, 
numerical procedures can be more sophisticated 
and calculations pursued for orders of magnitude 
larger numbers of iterations. This contributes to 
considerable improvements in the quality of the 
results available and permits detailed compari- 
sons between results of the two methods. Fur- 
ther, as there are isotherms for which an ana- 
lytical solution does exist, we can design a 
quality benchmark for numerical solutions by 
calculating them in cases when the analytical 
solution exists and comparing both solutions. 

In both algorithms, we assumed the local 
isotherm to be given by the Langmuir model 
(Eq. 2). This assumption is not a restriction; 
both programs could be used with any local 
isotherm model making physical sense. The 
Langmuir model is appropriate for a comparison 
between the results of various calculation meth- 
ods. 

Algorithm based on the AL method. This first 
algorithm is similar to the one designed by Roles 
and Guiochon [17], with the following differ- 
ences: 

(i) The experimental isotherm is used directly, 
and not replaced by a model. 

(ii) We introduce q, in Eq. 1, which provides 
the distribution f(e), while they ignored it [17], 
with the result that this earlier algorithm gives 

q,f(e). 
(iii) Instead of using Eq. 1 directly in the 

calculation [17], we replaced it by Eq. 22, as did 
Adamson and Ling [26]. The advantage is that 
the method requires only the use of the integral 
distribution, F(E), in the calculation. As @(E) is 
calculated from Fk I’, there is no need to 
calculate f(e), except once, at the very end of the 
program. In contrast, procedures using Eq. 1 
require f(e) to calculate qz,, at each iteration. 
This in turn requires the fitting of F” -I(E) with 
an Akima cubic spline [33]. and differentiation 
of the spline. This change results into faster 
calculations and the possibility to carry out 
longer iterations. 

(iv) As F(r) must obviously be found within 
the interval O-1. we introduce this condition in 
the program, by replacing systematically any 
negative value by 0, and any value larger than 1 
by 1 at each iteration. This latter restriction has a 
profound positive influence on the shape of the 
adsorption energy distribution when the number 
of iterations is small or moderate and it hastens 
convergence (see Fig. 1). 

(v) We found that a very large number of 
iterations has to be carried out. Some calcula- 
tions reported below include up to 20 000 such 
iterations, whereas earlier results included no 
more than 200 [17]. The width of the energy 
distribution decreases slowly with increasing 
numbers of iterations (see below), especially 
when the energy distribution has sharp peaks. 
Hence the number of iterations needed for 
accurate results becomes very large when almost 
homogeneous surfaces are studied. 

Algorithm based on the HILDA method. The 

algorithm developed includes only two modi- 
fications to the original HILDA algorithm: 

(i) Since, as mentioned in the previous sec- 
tion, F(C) must be found within the interval O-1, 
we included this restriction in this program also. 
At the end of each iteration, any negative value 
is replaced by 0, any value larger than 1 by 1. 

(ii) Since in any iteration, k. Fk(e),+, must be 
larger than F’(E),. for any data point j, the 
following statement is included in the program: 

if F’(r),+, < F’(E), 

then FC(~),,_, = F’(E), (29) 
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instead of F”(E)~+~ = FC(~)j + 1. lop6 as used by 
House and Jaycock [26]. The number 1. 10e6 is 
arbitrary. We found that when the number of 
iterations is small, the shape of the distribution 
changes somewhat with the value chosen for that 
small number, and we preferred to replace it by 
zero. 

3. Results and discussion 

We compared the adsorption energy distribu- 
tions obtained with the two numerical solutions 
and the Sips analytical solution in the cases when 
the experimental isotherm is a Langmuir and a 
Misra isotherm. 

3.1. The experimental isotherm is a Langmuir 
isotherm 

In this case the analytical solution is a single 
impulse, or Dirac 6 function at the energy E = 
RT ln(KIA). The comparison between this solu- 
tion and the numerical solutions will be instruc- 
tive regarding the ability of the program to 
handle discontinuities. Numerical solutions al- 
ways include some dispersion of numerical 
origin, related to the computer need to round-up 
numbers, and programs experience great difficul- 
ties in accounting for discontinuities or impulses. 
To perform the comparison, we selected a value 
A = 0.0013 atm, and K = 36 450 atm, which gives 
as solution an impulse at E = 10.66 kcal/mol. 

Fig. 1 shows the results obtained with different 
algorithms, all run for the same number of 
iterations (2000). The vertical solid line gives the 
analytical solution. The dotted line is the nu- 
merical solution given by the HILDA method, 
while the dashed line results from the AL meth- 
od. Note that both algorithms include the con- 
dition that F(E) cannot exceed 1. The AL and 
HILDA solutions are almost exactly overlaid, 
and cannot be distinguished, except at the very 
top. Note that the energy range used for the 
figure is only 1 kcal/mol. Two other solutions 
are shown in Fig. 1, the solution given by the 
HILDA algorithm without the added restrictions 
regarding the value of F(E) which cannot exceed 

-_ 

Fig. 1. Comparison of the analytical and several numerical 
solutions obtained for the adsorption energy distribution in 
the case when the experimental isotherm follows the Lang- 
muir model. Abscissa, adsorption energy (kcal/mol). Ordi- 
nate, energy ditribution (mol/kcal). Solid line, analytical 
solution, a s-function at E = RT In(K/A) (Eq. 13); dotted 
line, numerical solution calculated with our implementation 
of the HILDA algorithm [26]; dashed line, numerical solu- 
tion calculated with our implementation of the Adamson and 
Ling [25] algorithm; dot-chain line (-.-), numerical solution 
calculated with the original HILDA algorithm [26], without 
the restriction added by us [if F(r) > 1, then F(E) = 1.01; 
dashed-chain line (---), numerical solution calculated with 
the “quasi-Adamson” algorithm of Roles and Guiochon [ 161. 
In all the numerical calculations, the number of iterations is 
equal to 2000. 

1 (-*- line), and the Roles-Guiochon algorithm 
(--- line). These last two lines are very close. 

These results demonstrate the profound simi- 
larity between the AL [26] and HILDA [27] 
methods. They also show the significant im- 
provement brought by our simple correction to 
these methods [If F(E) < 0, F(e) = 0; if F(E) > 1, 
F(E) = 11, resulting in a numerical solution which 
is much sharper on the low-energy side, and 
closer to the analytical solution, although still 
significantly different on the high-energy side. 
The results obtained with the quasi-Adamson 
method [17,31] are slightly different from those 
given by the AL method or the HILDA algo- 
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rithm, probably because in this calculation pro- 
cedure f(e) is calculated at each iteration step, by 
fitting the values of F(E) to an Akima cubic 
spline and differentiating the spline. This pro- 
cedure causes errors of numerical origin which 
remain significant as long as the number of 
iterations is not very large. 

A further improvement could be made by 
increasing the number of iterations. We compare 
in Fig. 2 the analytical solution (solid line) and 
the numerical solution derived from the HILDA 
algorithm (dotted line) after 20 000 iterations. 

The numerical solution has become much nar- 
rower, and is now very close to the analytical 
solution. 

Finally, in Fig. 3, we compare the analytical 
solution obtained for a bi-Langmuir isotherm 
(solid lines) and the numerical solution calcu- 
lated with the HILDA algorithm, and 20 000 
iterations (dotted line). For a multi-Langmuir 
isotherm, the solution is a series of impulses. 
The number of impulses is the number of terms 
in the isotherm model; their location is given by 
Eq. 13. The numerical solution has two narrow 
peaks. The numerical dispersion is more im- 

Fig. 2. Comparison of the analytical and numerical solutions 

obtained for the adsorption energy distribution in the case 

when the experimental isotherm follows the Langmuir 

model. Abscissa, adsorption energy (kcal/mol). Ordinate, 

energy distribution (molikcal). Solid line, adsorption energy 

distribution calculated from the analytical solution (Eq. 13); 

dotted line, adsorption energy distribution calculated with 
our implementation of the HILDA algorithm [26]. The 

number of iterations for this numerical solution is 20000. 

r 

9 10 11 12 

Fig. 3. Comparison of the analytical and numerical solutions 

obtained for the adsorption energy distribution in the case 

when the experimental isotherm follows a bi-Langmuir 

model. Abscissa, adsorption energy (kcal/mol). Ordinate. 

energy distribution (molikcal). Solid line, adsorption energy 

distribution obtained from the analytical solution (Eq. 13); 

dotted line, energy distribution calculated with our im- 

plementation of the HILDA algorithm [26]. The number of 

iterations is 20 000. 
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portant for the higher energy than for the lower 
energy impulse. 

3.2. The experimental isotherm is a Misra 
isotherm 

With the Misra isotherm [18] also, the ad- 
sorption energy distribution can be derived as an 
analytical solution to Eq. 1. This solution is a 
broad distribution which provides a different test 
of the validity of the numerical algorithms. The 
Misra isotherm is given by Eq. 16 and the 
corresponding adsorption energy distribution by 
Eq. 17. In the calculations, we assumed that 
IZ = 5, l 0 = 1 kcal/mol, and K = 36450 atm. 
Using the isotherm given by Eq. 16 as an 
experimental isotherm, we also calculated the 
adsorption energy distributions using the AL and 
the HILDA algorithm. 

The adsorption energy distributionscalculated 
with the AL. and the HILDA algorithms are 
compared in Fig. 4. They are nearly identical. In 
Fig. 5, we compare these two distributions, 
represented by the solution of the HILDA algo- 
rithm (dotted line), and the analytical solution 
given by Eq. 17 (solid line). The two results are 
in very good agreement, in spite of a slight 
smoothing of the energy discontinuity at co which 
is replaced by a steep decay, and a rounding up 
of the energy maximum. This completes the 
demonstration that if the AL and HILDA algo- 
rithms are carried out with a sufficiently large 
number of iterations, they give an accurate 
solution of Eq. 1, and can provide the correct 
energy distribution, provided that the isotherm 
data made available to the programs contain all 
the required information, i.e., cover a sufficient- 
ly broad range of partial pressures, and extend 
close enough to the saturation limit. 

3.3. Required range of isotherm data 

In principle, the isotherm data should be 
measured over a range of partial pressures that 
extends to the monolayer saturation. It is im- 
portant to find out what error can be caused by 
the truncation of the isotherm data. In Fig. 6, we 
compare the numerical solution of Eq. 1 with the 
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f 
Fig. 4. Comparison of two numerical solutions obtained for 
the adsorption energy distribution in the case when the 
experimental isotherm follows a Misra model (Eq. 16). 
Abscissa, adsorption energy (kcalimol). Ordinate, energy 
distribution (mol/kcal). Solid line, adsorption energy dis- 
tribution calculated with our implementation of the algorithm 
based on the Adamson and Ling method [25]; dotted line, 
adsorption energy distribution calculated with our im- 
plementation of the HILDA algorithm [26]. The number of 
iterations in both calculations is 20 000. As expected, there is 
no difference between the two results. 

“experimental” isotherm given by Eq. 16, in 
three different cases. In the first (solid line), the 
isotherm data used cover the whole isotherm 
range. This figure shows that the isotherm data 
should be acquired from pressures as low as that 
corresponding to E,,, =5 kcal/mol, an up to 
pressures as high as that corresponding to emi,, = 
1 kcal/mol. In order to investigate the conse- 
quences of a truncation of the isotherm data, we 
carried out two other calculations, using the 
same isotherm data, but truncated at either low 
or high pressures. 

The energy distribution given by the dotted 
line was calculated with the same isotherm data, 
after truncation of the low-pressure isotherm 
data, the cut point corresponding to E = 4. The 

- 
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f 

Fig. 5. Comparison of the analytical and numerical solutions 

obtained for the adsorption energy distribution in the case 

when the experimental isotherm follows a Misra model (Eq. 

16). Abscissa. adsorption energy (kcalimol). Ordinate, 

energy distribution (molikcai). Solid line, adsorption energy 

distribution calculated with the analytical solution (Eq. 17); 

dotted line, adsorption energy distribution calculated with 

our implementation of the HILDA algorithm 1261. The 

number of iterations is 20 000. 

energy distribution obtained is nearly correct 
below E = 3, but in serious error above, and even 
making no sense for energies exceeding 4 kcall 
mol. Missing the data corresponding to the high- 
energy sites has relatively little effect on the 

energy distribution for the low-energy sites. 
Conversely, the dashed line shows the energy 
distribution calculated using the same isotherm 
data, after truncation of the high-pressure part, 
corresponding to adsorption energies lower than 
E III,” = 2. The energy distribution obtained in this 

case is made of three sharp peaks, and could be 
mistaken for a distribution corresponding to a 
tri-Langmuir isotherm. It has nothing in common 
with the “true” energy distribution (solid line). 

Fig. 6. Effect of the range of isotherm data acquired for the 

calculation of the adsorption energy distribution. Abscissa, 

adsorption energy (kcalimol). Ordinate, energy distribution 

(mot / kcal). Comparison of numerical solutions obtained for 

the adsorption energy distribution in the case when the 

experimental isotherm follows a Misra model (Eq. 16). In 

this instance, the isotherm data used in the program include 

the whole range of partial pressures up to the saturation 

capacity. Dotted line. adsorption energy distribution calcu- 

lated with isotherm data truncated at low pressures and 

complete at high pressures. so the data include all those 

corresponding to an adsorption energy lower than emal. = 4.0 

kcalimol: dashed line. adsorption energy distribution calcu- 

lated with isotherm data truncated at high pressures but 

complete at low pressures. so the isotherm data include those 

corresponding to an energy higher than E,,, = 2 kcal!mol. 

These results show how important it is to 
acquire isotherm data up to very high values of 
the adsorbate partial pressure. The lack of mea- 
surements carried out in a sufficiently wide 
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partial pressure range results in erroneous ad- 
sorption energy distributions, and leads to incor- 
rect conclusions. 

4. Conclusions 

The Sips method gives the only analytical 
solution that corresponds to a Langmuir model 
for the local isotherm, but it requires that we use 
one of the few isotherm models for which it can 
be solved to account for the experimental ad- 
sorption data and it cannot be applied directly to 
the experimental adsorption isotherm. For that, 
a numerical solution is necessary [1,2]. Such a 
solution does not require any model for the 
experimental isotherm data, but uses directly the 
experimental data, and has the further advantage 
of being able, at least in principle, to accommo- 
date any local isotherm model. 

The availability of an analytical solution in a 
non-trivial case, however, is extremely helpful as 
a benchmark for the numerical solutions. The 
implementation of these solutions requires a 
large number of iterations. Such calculations 
introduce numerical errors, usually in the form 
of dispersive contributions. The comparison be- 
tween the energy distributions resulting from a 
numerical solution and from the corresponding 
analytical solution, when it exists, gives a useful 
performance index of the numerical procedure 
used. From this point of view, both the Adam- 
son-Ling and the HILDA algorithms are satis- 
factory. 

Finally, the computer simulation of an entire 
experiment performing the determination of the 
adsorption energy distribution on a surface with 
an assumed distribution permits the determina- 
tion of the specifications regarding the ex- 
perimental parameters selected and the study of 
the systematic errors introduced by experimental 
procedures (e.g., temperature or flow-rate). Both 
numerical methods studied here require the 
determination of isotherm data up to irrealisti- 
tally high values of the partial pressure of the 
adsorbate. 
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